Thursday, December 22, 2005

Chinese calendar

Chinese calendar

The Chinese calendar is lunisolar, so a leap year has an extra month, often called an embolismic month after the Greek word for it. In the Chinese calendar the leap month is added according to a complicated rule, which ensures that month 11 is always the month that contains the northern winter solstice. The intercalary month takes the same number as the preceding month; for example, if it follows the second month then it is simply called "leap second month".
Hebrew calendarThe Hebrew calendar is also lunisolar with an embolistic month. In the Hebrew calendar the extra month is called Adar Alef (first Adar) and is added before Adar, which then becomes Adar Sheni (second Adar). According to the Metonic cycle, this is done seven times every nineteen years, specifically, in years, 3, 6, 8, 11, 14, 17, and 19.
In addition, the Hebrew calendar has postponement rules that postpone the start of the year by one or two days. The year before the postponement gets one or two extra days, and the year whose start is postponed loses one or two days. These postponement rules reduce the number of different combinations of year length and starting day of the week from 28 to 14, and regulate the location of certain religious holidays in relation to the Sabbath.
Hindu CalendarIn the Hindu calendar, which is a lunisolar calendar, the embolismic month is called adhika maas (extra month). It is the month in which the sun is in the same sign of the stellar zodiac on two consecutive dark moons.
Iranian calendarThe Iranian calendar also has a single intercalated day once in every four years, but every 33 years or so the leap years will be five years apart instead of four years apart. The system used is more accurate and more complicated, and is based on the time of the March equinox as observed from Teheran. The 33-year period is not completely regular; every so often the 33-year cycle will be broken by a cycle of 29 or 37 years.
Long term leap year rulesThe accumulated difference between the Gregorian calendar and the vernal equinoctial year amounts to 1 day in about 8,000 years. This suggests that the calendar needs to be improved by another refinement to the leap year rule: perhaps by avoiding leap years in years divisible by 8,000.
(The most common such proposal is to avoid leap years in years divisible by 4,000 [1]. This is based on the difference between the Gregorian calendar and the mean tropical year. Others claim, erroneously, that the Gregorian calendar itself already contains a refinement of this kind [2].)
However, there is little point in planning a calendar so far ahead because over a timescale of tens of thousands of years the number of days in a year will change for a number of reasons, most notably:
Precession of the equinoxes moves the position of the vernal equinox with respect to perihelion and so changes the length of the vernal equinoctial year. Tidal acceleration from the sun and moon slows the rotation of the earth, making the day longer. In particular, the second component of change depends on such things as post-glacial rebound and sea level rise due to climate change. We can't predict these changes accurately enough to be able to make a calendar that will be accurate to a day in tens of thousands of years.

Which day is the leap day?

Which day is the leap day?

The Gregorian calendar is a modification of the Julian calendar first used by the Romans. The Roman calendar originated as a lunar calendar (though from the 5th century BC it no longer followed the real moon) and named its days after three of the phases of the moon: the new moon (calends, hence "calendar"), the first quarter (nones) and the full moon (ides). Days were counted down (inclusively) to the next named day, so 24 February was ante diem sextum calendas martii ("the sixth day before the calends of March").
Since 45 BC, February in a leap year had two days called "the sixth day before the calends of March". The extra day was originally the second of these, but since the third century it was the first. Hence the term bissextile day for 24 February in a bissextile year.
Where this custom is followed, anniversaries after the inserted day are moved in leap years. For example, the former feast day of Saint Matthias, 24 February in ordinary years, would be 25 February in leap years.
This historical nicety is, however, in the process of being discarded: The European Union declared that, starting in 2000, 29 February rather than 24 February would be leap day, and the Roman Catholic Church also now uses 29 February as leap day. The only tangible difference is felt in countries that celebrate feast days.
Julian calendarThe Julian calendar adds an extra day to February in years divisible by 4.
This rule gives an average year length of 365.25 days. The excess of about 0.0076 days with respect to the vernal equinox year means that the vernal equinox moves a day earlier in the calendar every 130 years or so.
Revised Julian CalendarThe Revised Julian calendar adds an extra day to February in years divisible by 4, except for years divisible by 100 that do not leave a remainder of 200 or 600 when divided by 900. This rule agrees with the rule for the Gregorian calendar until 2799. The first year that dates in the Revised Julian calendar will not agree with the those in the Gregorian calendar will be 2800, because it will be a leap year in the Gregorian calendar but not in the Revised Julian calendar.
This rule gives an average year length of 365.242222… days. This is a very good approximation to the mean tropical year, but because the vernal equinox tropical year is slightly longer, the Revised Julian calendar does not do as good a job as the Gregorian calendar of keeping the vernal equinox on or close to 21 March.

Leap year

Leap year
A leap year (or intercalary year) is a year containing an extra day or month in order to keep the calendar year in sync with an astronomical or seasonal year. Seasons and astronomical events do not repeat at an exact number of days, so a calendar which had the same number of days in each year would over time drift with respect to the event it was supposed to track. By occasionally inserting (or intercalating) an additional day or month into the year, the drift can be corrected. A year which is not a leap year is called a common year.
Leap years (which keep the calendar in sync with the year) should not be confused with leap seconds (which keep clock time in sync with the day).

Gregorian calendar

The Gregorian calendar, the current standard calendar in most of the world, adds a 29th day to February in all years evenly divisible by 4, except for century years (those ending in -00), which receive the extra day only if they are evenly divisible by 400. Thus 1996 was a leap year whereas 1999 was not, and 1600, 2000 and 2400 are leap years but 1700, 1800, 1900 and 2100 are not.
The reasoning behind this rule is as follows:
The Gregorian calendar is designed to keep the vernal equinox on or close to March 21, so that the date of Easter (celebrated on the Sunday after the 14th day of the Moon that falls on or after 21 March) remains correct with respect to the vernal equinox. The vernal equinox year is currently about 365.242375 days long. The Gregorian leap year rule gives an average year length of 365.2425 days. This difference of a little over 0.0001 days means that in around 8,000 years, the calendar will be about one day behind where it should be. But in 8,000 years' time the length of the vernal equinox year will have changed by an amount we can't accurately predict (see below). So the Gregorian leap year rule does a good enough job.

Friday, December 16, 2005

Water Treatment

The Foul taste and smell of the water we use may give rise to the need of water treatment equipment .The widespread issues about water pollution problems will cause to talk about the safety of the water supply. Or stone scale loudening may source you to move ahead in early proxy of plumbing fittings and water-using appliances. Firstly the water present should be analyzed. Water-analysis will help identify bacteria, minerals, or other pollutants that are present. If the quality of water is not up to the desire of the experts they should be treated.
Keep in mind that no single water treatment device treats all problems, and that all devices have limitations. Common water quality problems and suggested corrective procedures. Water treatment instruments should be taken according to the contaminants and the impact and quantity of different impurities.

Desalination

Under desalination, water flows through a membrane having salty side at one end and unsalted side at other end. Only giving pressure to can do this process the water at the membranes salty side. This is for two reasons. First, removal of natural osmotic pressure and second one is creating extra pressure on the water column then only water is pushed through the membrane.

The Requirement of pressure for desalination of seawater is 50-60 bars. Reverse osmosis a specific process, which is proved. Electro dialysis, distillation and ion exchange are some of the techniques are Used for water desalination.